The generator matrix

 1  0  0  1  1  1  1  1  1  1  3  1  X  1  1  1  0  1 X+3  1  3  1  1 2X+3  1  1  1 X+3  1 2X  1 2X+3  1  1  X  1  1  1  1 2X  1  1  1  1 X+3  6 X+3  1  1  1  1  1  X  1 2X+3  1  1  1  1  1  1 2X+3  1 2X 2X+3  1  1  1  1  1 2X+6  1  1  X  1  1  1  1 2X+3  1  1 X+6  1  1  1 X+6  1 X+3  6  1  1  1  1  1  1  1  1
 0  1  0  0  6 2X+4 2X+4 X+8  1 X+2  1  2  1 2X  6  6  1 X+5  1  5  1  4 2X+7 2X+3 2X+2 2X+4 2X+5  1  X 2X+3  4  1 X+2 2X+1  1  6 2X+4 2X+3  5  1 X+1 2X+2  2  X  1  1 2X+3  5 2X+6 2X+6 X+1  5  1 X+7  1 2X+8  1  X X+1  1 2X+2  1 X+6  1 X+6 2X+5  X  2  8 X+4 X+3  4  0  1  6 X+5 2X X+6  1 2X+7 2X+5 X+6 X+4  3 2X+3  1  4 2X+6  1  1 2X+2  1  4  0 X+7 X+7  3
 0  0  1  1  2  2 2X+3  1  7 2X+3  7 X+2 X+8 X+1 X+3 X+2 X+1  4 2X+8 X+8 2X+6 X+7 X+6  1 X+6 2X+2 2X+5  0  1  1 X+1  5 2X+7  X X+1 X+8  2 2X+3  X 2X+1 X+8 2X+4 2X+6  3 2X+1 X+5  1  5 2X+8 X+1 X+4  5 X+3 X+6  5  5 2X+3 2X+6  1  8  1 2X+4 2X+8  0  1  3 X+2  6  0  6  1  5 2X+8 2X+2 X+7 X+6 2X X+7 X+1 X+8 X+1  1  3  3  4  3 X+5  1 X+7  X X+1 2X+6  2 X+7 2X 2X+3 X+3
 0  0  0 2X  3  6  0  6  0  3  3  3  6  0 X+6  X 2X+3 2X+3 2X 2X+6 2X+6 X+3  X 2X 2X+3 X+6 X+3  X X+6 X+6 2X+6 X+6 X+3 2X+6  X 2X+3 2X+3  X 2X+3  0 X+3 2X+6 X+6 2X+6 2X+6 X+6 X+6  0  3 X+6 2X+6  X  0 2X  3 2X X+3  3  3  0  X  X  6 2X 2X+3  3  X X+6 2X  0  X 2X+3  3  6  0  0  6  3 2X  0 2X+6 X+3 2X 2X+6 2X 2X+3  X 2X+6  3  X  6  6 2X+6 2X+3 2X+3  3  0

generates a code of length 97 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 182.

Homogenous weight enumerator: w(x)=1x^0+366x^182+704x^183+1746x^184+3018x^185+4006x^186+5664x^187+7488x^188+8454x^189+9468x^190+12318x^191+12636x^192+13494x^193+15024x^194+14480x^195+13404x^196+14484x^197+11164x^198+8760x^199+7482x^200+4776x^201+3528x^202+1986x^203+1136x^204+642x^205+360x^206+124x^207+84x^208+84x^209+70x^210+24x^211+60x^212+16x^213+36x^214+6x^215+12x^216+12x^217+18x^218+12x^219

The gray image is a code over GF(3) with n=873, k=11 and d=546.
This code was found by Heurico 1.16 in 95.6 seconds.